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N A S A  TT F-11,653 

DYPJAMIC FEATURES nF A S P H E R I r A L  GAS BUBBLE I f \  F L U I D  
V . K .  Kedrinskiy 

ABSTRACT: An anaZysis i s  made of a s p h e r i c a l  gas 
bubbZe i n  both  compressible  and incompressible  
f l u i d s .  The movements of t h e  bubbZe waZZ are . 

anaZyzed i n  reZat ion  t o  pressure  waves and con- 
d i t i o n s  imposed by an incompressible  f l u i d .  
The sphericaZ symmetry of p u l s a t i o n s  i n  a com- 
p r e s s i b l e  nonviscous fZuid  i s  examined. 

Most of the problems related to the dynamics of a fluid which /120: 
contains gas bubbles are essentially concerned with the character 
of the pulsation of individual bubbles. An additional pressure 
field, determined by these pulsations, has a decided effect on the 
general state of the bubble medium in many cases. We will be con- 
cerned below with certain features of the pulsation of a spherical 
gas bubble in compressible and incompressible fluids. 

(1) The movements of spherical bubble walls in an incompres- 
sible liquid, without consider'ing the viscosity, is determined by 
the following question: 

Here P ( R )  is the pressure inside the bubble, P ( t )  is the ap- 
plied pressure, p is the density of the fluid, R is the radius of 
the bubble; the dot signifies the total time derivative. When P ( t )  
= const and the bubble is contracted adiabatically, we can easily 
obtain the folloWjng from (1.1): 

(1.2) 

(where y is the adiabatic characteristic, R5 is the minimum radius 
for the.density, R o  is the original radius, Po is the original 
pressure in the bubble). We can also determine the time for densi- 
ty contraction in the same way: 

But we usually should be concerned with the pressure, which 

3tNumbers in the margin indicate pagination in the foreign text. 
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depends substantially on the time. In this case, we cannot deter- 
mine either the time or the degree of contraction of the bubble 
directly from (1.1). 

The results of a numerical solution to (1.1) in dimensionless 
form are given in [I]: 

Here 1.1 is the dimensionless parameter which determines the re- 
lationship between the time constant for pressure decrease and the 
characteristic time for bubble contraction by a constant pressure 
Po. The calculations were made for the case of waves with an expo- 
nential profile of A = 10, 100, and 1000, during a change in P 
from 0.01 to 1000. The analysis showed that the pulsation of a 
bubble affected by a pressure with various T complies with a defi- 
nite rule 

/12: - 

Here t p *  is the unknown time for bubble contraction for waves 
with ~2 in an unknown t1* for a wave of the same amplitude but with 
T I  (the pressure at the front of the wave results in the following 
equation for ti*). The index k is determined from the condition, 

As we can see from (1.41, the relationship among the times 
for bubble contraction in pressure waves with various T with an 
accuracy up to a constant coefficient is determined by the square 
root of the relationship for the parameters p which are character- 
istic for these waves. Equation (1.4) gives us the possibility 
(for example, knowing the time for bubble contraction by a wave 
with constant pressure at the front) to determine the time for com- 
pression of this bubble by a wave with the same amplitude but with 
very small T, and is chosen so that it satisfies (1.3). 

Another characteristic for the pulsating bubble is the mini- 
mum contraction radius. The relationships between the minimum 
radius, the amplitude of the pressure, and the characteristics of 
a constant pressure wave can, by analogy with (1.21, take the fol- 
lowing form: 
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We c a n  see f rom t h i s  t h a t ,  f o r  P +a, i . e .  f o r  waves w i t h  a 
c o n s t a n t  p r e s s u r e  a t  t h e  f r o n t ,  t h i s  e x p r e s s i o n  i s  t h e  same as  i n  
( 1 . 2 ) .  

The c a l c u l a t i o n s  f o r  v a r i o u s  A a n d  P(RO = 1 cm) a c c o r d i n g  
t o  ( 1 . 4 )  and  ( 1 . 6 )  a r e  g i v e n  i n  T a b l e s  1 and  2 ,  where  t h e y  a r e  com- 
p a r e d  t o  t h e  d a t a  i n  E11 ( t h e  r e s u l t s  o f  m a c h i n e  c a l c u l a t i o n  a r e  
g i v e n  i n  T a b l e  1, and t h e  r e s u l t s  o f  c a l c u l a t i o n s  a c c o r d i n g  t o  ( 1 . 4 )  
a n d  ( 1 . 6 )  a r e  g i v e n  i n  T a b l e  2 ) .  The r e l a t i o n s h i p s  o b t a i n e d  i n  
( 1 . 4 )  and  ( 1 . 6 )  a r e  v e r y  u s e f u l  f o r  a p p r o x i m a t e  e s t i m a t i o n s  o f  t h e  
p r i n c i p a l  c h a r a c t e r i s t i c s  o f  t h e  b u b b l e  p u l s a t i o n  i n  a n  i n c o m p r e s -  
s i b l e  f l u i d  a f f e c t e d  by a p r e s s u r e  wh ich  c h a n g e s  g r e a t l y  w i t h  t i m e .  

T A B L E  1 
I '  

on b u b b l e  D u l s a t i o n  i n  r a f t s  o f  / 1 2 :  - 
a n  i n c o m p r e s s i b l e  f l u i d  r e s u l t s  i n  s i g n i f i c a n t  d i v e r g e n c e s  f rom t h e  
a c t u a l  c h a r a c t e r i s t i c s  o f  p u l s a t i o n  t o  t h e  c a l c u l a t e d  o n e s  i f  w e  
e x a m i n e  t h e  c a s e s  i n  wh ich  t h e  w a l l s  o f  t h e  c a v i t i e s  r e a c h  v e l o c i -  
t i e s  on t h e  o r d e r  o f  t h e  sound v e l o c i t y .  The l a t t e r  t a k e s  p l a c e ,  
f o r  e x a m p l e ,  i n  t h e  p r o b l e m s  o f  c a v i t a t i o n  and  t h e  phenomena accom- 
p a n y i n g  i t .  The t h e o r y  of c o l l a p s e s  i n  h o l l o w  b u b b l e s  d u r i n g  i t s  
v e r y  f i r s t  f o r m u l a t i o n  l e d  u s  t o  c o n c l u d e  t h a t  it i s  n e c e s s a r y  t o  
c o n s i d e r  t h e  c o n t r a c t a b i l i t y ,  i n  v i e w  o f  t h e  l a r g e  v a l u e s  f o r  v e l o -  
c i t i e s  and  p r e s s u r e s  o b t a i n e d  as  a r e s u l t  o f . t h e  b u r s t .  The con-  
t r a c t i o n  o f  g a s - f i l l e d  c a v i t i e s  a f f e c t e d  by  g r e a t  p r e s s u r e s  i s  a l -  
s o  o b s e r v e d  i n  t h e  same way. L e t  u s  examine  t h e  s p h e r i c a l l y  sym- 
m e t r i c  p r o b l e m  of  a g a s  b u b b l e  p u l s a t i o n  i n  a c o m p r e s s i b l e  v i s c o u s  
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f l u i d .  We w i l l  r e p l a c e  t h e  v e l o c i t y  o f  t h e  p a r t i c l e  U by t h e  
s l o p e  of  t h e  v e l o c i t y  p o t e n t i a l  4 ,  and  w e  w i l l  w r i t e  t h e  e q u a t i o n s  
t h u s :  
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( 2 . 1 )  
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Here P is  t h e  p r e s s u r e ,  p i s  t h e  d e n s i t y  o f  t h e  f l u i d .  I n t e -  
g r a t i o n  o f  ( 2 . 1 )  g i v e s  

i f  h i s  t h e  d i f f e r e n c e  i n  e n t h a l p i e s  be tween  p o i n t  r and  i n f i n i t y .  
We w i l l  a s sume  t h a t  PaJ a t  i n f i n i t y  i s  c o n s t a n t ,  t h a t  t h e  v e l o c i t y  
a n d  t h e  p o t e n t i a l  o f  v e l o c i t y  a t  i n f i n i t y  d i s a p p e a r ,  a n d  t h a t  p i s  
a f u n c t i o n  o n l y  o f  p r e s s u r e .  Us ing  
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(2.4) r (h.+ ' 1 , V )  P j' ( t  - r I C) 
_ _ -  -- 

/123 E q u a t i o n s  (2.4) and (2.5) show t h a t  r $  and  r ( h  + %U2) i n  a n  - 
a c o u s t i c  a p p r o x i m a t i o n  expand  w i t h  t h e  v e l o c i t y  C ( l o c a l  sound  v e l o -  
c i t y ) .  On t h e  b a s i s  o f  t h e  f a c t  t h a t  t h e  v e l o c i t i e s  o f  t h e  f l u i d  
c a n  r e a c h  v a l u e s  on t h e  o r d e r  o f  t h e  s o u n d  v e l o c i t y ,  Kirkwood C2l 
made a n  a s s u m p t i o n  as t o  t h e  p r o p a g a t i o n  r ( h  + % U 2 )  a t  a v e l o c i t y  
C + U. On t h e  b a s i s  of t h e s e  a s s u m p t i o n s  we w i l l  w r i t e  c 3 ,  41: 

(2.5) 

Opening  (2.5) by u s i n g  

w e  w i l l  o b t a i n  t h e  r u l e  f o r  movement o f  t h e  g a s  b u b b l e  w a l l  

(2.6) 

However ,  w e  mus t  e x p l a i n  t o  what  d e g r e e  (2.7) a g r e e s  w i t h  t h e  
p r e c i s e  e q u a t i o n s  f o r  t h e  f l o w  ( 2 . 1 ) .  I t  i s  o b v i o u s  t h a t  f o r  a 
more  c o m p l e t e  d e t e r m i n a t i o n  o f  t h e  p o s s i b i l i t i e s  i n  K i r k w o o d ' s  as- 
s u m p t i o n ,  w e  mus t  examine  t h e  case  of c o n t r a c t i o n  f o r  a h o l l o w  
c a v i t y ,  wh ich  e n t a i l s  e x a m i n i n g  t h e  b e h a v i o r  o f  t h e  f u n c t i o n  ob-  
t a i n e d  i n  a l a r g e  r a n g e  of v e l o c i t i e s  f o r  t h e  c a v i t y  w a l l s  ( f rom 
0 t o  a). 

A n u m e r i c a l  i n t e g r a t i o n  o f  (2.11, made by K a n t e r  C 5 l  f o r  a 
s p h e r i c a l l y  s y m m e t r i c a l  h o l l o w  c a v i t y  i n  w a t e r ,  showed g r e a t  v e l o -  
c i t i e s  f o r  f l o w  n e a r  t h e  c o l l a p s i n g  p o i n t .  I t  was f o u n d  t h a t  t h e  
c a v i t y  r a d i u s  i n  t h i s  case i s  p r o p o r t i o n a l  t o  ( - t )n  (t = 0 i s  t h e  
moment of  c o l l a p s e ) .  The f l o w  i n  t h e  a r e a s  s u r r o u n d i n g  t h e  c o l -  
l a p s i n g  p o i n t  i s  d e s c r i b e d  by a s e l f - s i m i l a r  s o l u t i o n  f rom which  
t h e  v a l u e  f o r  n i s  d e t e r m i n e d .  The v a l u e  f o r  n was f o u n d  e q u a l  t o  
0.5552 i n  C5, 61. W r i t i n g  (2.7) f o r  t h e  c a s e  o f  a h o l l o w  c a v i t y  
( i . e .  a s s u m i n g  t h a t  C = c o n s t  a n d  H = c o n s t ) ,  we o b t a i n  

S u b s t i t u t i n g  K a n t e r ' s  s o l u t i o n  C 5 1  i n  t h e  fo rm o f  R -  A t n  
i n t o  (2.9), w e  c a n  e a s i l y  o b t a i n  t h e  v a l u e  o f  n for t + 0 .  I t  i s  

5 
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equal to 0.666. And for the case of a nonviscous fluid, n = 0.4, 
i.e. the behavior of the cavity wall in the areas surrounding the 
collapsing point is as far from Kanter's results as in the nonvis- 
cous case. Repetition of the arguments mentioned above for the 
acoustic case results in 

(2.10) 

which in the case of a hollow cavity gives the value n = 0 . 5 ,  i.e. 
an accurate solution lies betiieen the acoustic and Kirkwood's cal- 
culation. We should note that (2.10) is none other than Hering's 
equation C21,  although the latter was obtained by a method other 
than the one described above. From the values obtained for n we 
can conclude that the velocity of expansion for the value of r ( h  t 
U 2 / 2 )  lies between C and C t U. We will assume that the expansion 
occurs with a velocity C t aU, where a = const. In this case we 
have 

(2.11) 

Substituting R = into this, we can easily obtain the 
value for a in the areas surrounding the collapsing point (at an 
infinite wall velocity). It is equal to 0 . 5 7 .  An analysis of the 
behavior of (2.11) for various R / C  showed that, in a certain approx- 
imation (we found a, corresponding to Kanter's curve, for each mo- 
ment), a will be a monotonically decreasing function of R'IC, which 
changes its value from 1 to 0 . 5 7  when R + 0. However, this does 
not exclude the possibility for an approximate description of the 
collapsing process by using a certain constant value for a. We 
must note that (2.11) is fairly adequate, since for various a, it 
can be converted into Kirkwood's equation ( a  = l), an equation with 
acoustic approximation ( a  = 01, or any intermediate term. 

/124 TABLE 3 - 
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The following data are given in Table 3 :  

(1) Numerical integration of the flow- and Kanter- equations; 
( 2 )  Calculation with Kirkwood's assumption according to the 

equation: 

( 3 )  Calculation of the acoustic variation 

( 2 . 1 2 )  

(2.13) 

(4) Calculation for assuming an expansion with velocity C + 
0.6U 

-. . -.C' . -1 

( 5 )  Calculation for a nonviscous fluid 
-- 1 . > -  I 

(2.14) 

( 2 . 1 5 )  

The dependence of the value for 
R ' / C  on R / R o ,  plotted according to the 
data of the table is shown in Figure 1. 
As we could easily note, Kirkwood's as- 
sumption agrees with the actual values 
for R ' / C  on the order of 1,and less C71, 
and s i m p l y  does not agree for greater 

- 1  consider that the velocity C + U is valid 
for the plane case. The acoustic varia- 
tion also differs rather substantially 

I velocities. This is very natural if we 

Fig. 1. from Kanter's curve, and in the range 
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for R'/C from 1 to 10 it differs even more from precise data than 
Kirkwood's curve. An introduction of the conditional coefficient 
a into the velocity of the expansion allows us to make certain es- 
timations on the behavior of the value for C + U as the velocity 
of the bubble wall increases. 

/ 1 2 5  

Fig. 2 .  

Taking the result obtained into account, we calculated the 
pulsation of a spherical bubble with a diamter of 1 cm affected by 
a suddenly-induced constant pressure whose amplitude changed from 
10 to 18000 atm. An air bubble was examined for an original pres- 
sure of 1 atm. The calculation was made on a computer according 
to ( 2 . 7 ) .  The equation for the state of the water was considered 
according to [ 2 ] .  The calculation results are given in Figure 2. 
The numbers correspond to amplitude of pressures in atm - 18000, 
9000, 3000, 1000, 8 0 0 ,  6 0 0 ,  400, 200, 100, 80, 60, 40, 20, 10. The 
dotted line connects all the first pulsation minima. We can easily 
find from the graph that RfS /Ro  is directly proportional to the time 
for contraction of the cavity 

(2.16) 

The contraction time t3: is rather accurately determined by 
(1.31, and A = 5/3 lo3 sec-1 is easily found from the graph. 

. 

Certain experiments were conducted in a hydrodynamic shock 
tube by determining the pulsations of air bubbles at pressures of 
several hundred atmospheres with a weakly-changing pressure on the 
surface. The method for conducting the experiment and a descrip- 
tion of the arrangement are given in C81, and the characteristic 
time-rebound of a bubble pulsation is also given there. The data 
on the degree and time of contraction correspond to the calculated 
values. 
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In conclusion, the author would like to express his gratitude 
L. Trokhan for his substantial aid in the computer calculations. 
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